3.18 \(\int \frac{1}{(a+b x^3) (c+d x^3)} \, dx\)

Optimal. Leaf size=288 \[ -\frac{b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} (b c-a d)}+\frac{b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac{b^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} (b c-a d)}+\frac{d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{6 c^{2/3} (b c-a d)}-\frac{d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}+\frac{d^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{c}-2 \sqrt [3]{d} x}{\sqrt{3} \sqrt [3]{c}}\right )}{\sqrt{3} c^{2/3} (b c-a d)} \]

[Out]

-((b^(2/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)*(b*c - a*d))) + (d^(2/3)*ArcTan
[(c^(1/3) - 2*d^(1/3)*x)/(Sqrt[3]*c^(1/3))])/(Sqrt[3]*c^(2/3)*(b*c - a*d)) + (b^(2/3)*Log[a^(1/3) + b^(1/3)*x]
)/(3*a^(2/3)*(b*c - a*d)) - (d^(2/3)*Log[c^(1/3) + d^(1/3)*x])/(3*c^(2/3)*(b*c - a*d)) - (b^(2/3)*Log[a^(2/3)
- a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*(b*c - a*d)) + (d^(2/3)*Log[c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/
3)*x^2])/(6*c^(2/3)*(b*c - a*d))

________________________________________________________________________________________

Rubi [A]  time = 0.146722, antiderivative size = 288, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 7, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.368, Rules used = {391, 200, 31, 634, 617, 204, 628} \[ -\frac{b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} (b c-a d)}+\frac{b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac{b^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} (b c-a d)}+\frac{d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{6 c^{2/3} (b c-a d)}-\frac{d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}+\frac{d^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{c}-2 \sqrt [3]{d} x}{\sqrt{3} \sqrt [3]{c}}\right )}{\sqrt{3} c^{2/3} (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^3)*(c + d*x^3)),x]

[Out]

-((b^(2/3)*ArcTan[(a^(1/3) - 2*b^(1/3)*x)/(Sqrt[3]*a^(1/3))])/(Sqrt[3]*a^(2/3)*(b*c - a*d))) + (d^(2/3)*ArcTan
[(c^(1/3) - 2*d^(1/3)*x)/(Sqrt[3]*c^(1/3))])/(Sqrt[3]*c^(2/3)*(b*c - a*d)) + (b^(2/3)*Log[a^(1/3) + b^(1/3)*x]
)/(3*a^(2/3)*(b*c - a*d)) - (d^(2/3)*Log[c^(1/3) + d^(1/3)*x])/(3*c^(2/3)*(b*c - a*d)) - (b^(2/3)*Log[a^(2/3)
- a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/(6*a^(2/3)*(b*c - a*d)) + (d^(2/3)*Log[c^(2/3) - c^(1/3)*d^(1/3)*x + d^(2/
3)*x^2])/(6*c^(2/3)*(b*c - a*d))

Rule 391

Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x^n),
 x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
 /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{1}{\left (a+b x^3\right ) \left (c+d x^3\right )} \, dx &=\frac{b \int \frac{1}{a+b x^3} \, dx}{b c-a d}-\frac{d \int \frac{1}{c+d x^3} \, dx}{b c-a d}\\ &=\frac{b \int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx}{3 a^{2/3} (b c-a d)}+\frac{b \int \frac{2 \sqrt [3]{a}-\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{3 a^{2/3} (b c-a d)}-\frac{d \int \frac{1}{\sqrt [3]{c}+\sqrt [3]{d} x} \, dx}{3 c^{2/3} (b c-a d)}-\frac{d \int \frac{2 \sqrt [3]{c}-\sqrt [3]{d} x}{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2} \, dx}{3 c^{2/3} (b c-a d)}\\ &=\frac{b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac{d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}-\frac{b^{2/3} \int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{6 a^{2/3} (b c-a d)}+\frac{b \int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx}{2 \sqrt [3]{a} (b c-a d)}+\frac{d^{2/3} \int \frac{-\sqrt [3]{c} \sqrt [3]{d}+2 d^{2/3} x}{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2} \, dx}{6 c^{2/3} (b c-a d)}-\frac{d \int \frac{1}{c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2} \, dx}{2 \sqrt [3]{c} (b c-a d)}\\ &=\frac{b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac{d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}-\frac{b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} (b c-a d)}+\frac{d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{6 c^{2/3} (b c-a d)}+\frac{b^{2/3} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}\right )}{a^{2/3} (b c-a d)}-\frac{d^{2/3} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{d} x}{\sqrt [3]{c}}\right )}{c^{2/3} (b c-a d)}\\ &=-\frac{b^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} x}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} a^{2/3} (b c-a d)}+\frac{d^{2/3} \tan ^{-1}\left (\frac{\sqrt [3]{c}-2 \sqrt [3]{d} x}{\sqrt{3} \sqrt [3]{c}}\right )}{\sqrt{3} c^{2/3} (b c-a d)}+\frac{b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{3 a^{2/3} (b c-a d)}-\frac{d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{3 c^{2/3} (b c-a d)}-\frac{b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{6 a^{2/3} (b c-a d)}+\frac{d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{6 c^{2/3} (b c-a d)}\\ \end{align*}

Mathematica [A]  time = 0.109617, size = 224, normalized size = 0.78 \[ \frac{\frac{b^{2/3} \log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2\right )}{a^{2/3}}-\frac{2 b^{2/3} \log \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{a^{2/3}}+\frac{2 \sqrt{3} b^{2/3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} x}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{a^{2/3}}-\frac{d^{2/3} \log \left (c^{2/3}-\sqrt [3]{c} \sqrt [3]{d} x+d^{2/3} x^2\right )}{c^{2/3}}+\frac{2 d^{2/3} \log \left (\sqrt [3]{c}+\sqrt [3]{d} x\right )}{c^{2/3}}-\frac{2 \sqrt{3} d^{2/3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{d} x}{\sqrt [3]{c}}}{\sqrt{3}}\right )}{c^{2/3}}}{6 a d-6 b c} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^3)*(c + d*x^3)),x]

[Out]

((2*Sqrt[3]*b^(2/3)*ArcTan[(1 - (2*b^(1/3)*x)/a^(1/3))/Sqrt[3]])/a^(2/3) - (2*Sqrt[3]*d^(2/3)*ArcTan[(1 - (2*d
^(1/3)*x)/c^(1/3))/Sqrt[3]])/c^(2/3) - (2*b^(2/3)*Log[a^(1/3) + b^(1/3)*x])/a^(2/3) + (2*d^(2/3)*Log[c^(1/3) +
 d^(1/3)*x])/c^(2/3) + (b^(2/3)*Log[a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2])/a^(2/3) - (d^(2/3)*Log[c^(2/3)
 - c^(1/3)*d^(1/3)*x + d^(2/3)*x^2])/c^(2/3))/(-6*b*c + 6*a*d)

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 222, normalized size = 0.8 \begin{align*} -{\frac{1}{3\,ad-3\,bc}\ln \left ( x+\sqrt [3]{{\frac{a}{b}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{1}{6\,ad-6\,bc}\ln \left ({x}^{2}-\sqrt [3]{{\frac{a}{b}}}x+ \left ({\frac{a}{b}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}-{\frac{\sqrt{3}}{3\,ad-3\,bc}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{a}{b}}}}}}-1 \right ) } \right ) \left ({\frac{a}{b}} \right ) ^{-{\frac{2}{3}}}}+{\frac{1}{3\,ad-3\,bc}\ln \left ( x+\sqrt [3]{{\frac{c}{d}}} \right ) \left ({\frac{c}{d}} \right ) ^{-{\frac{2}{3}}}}-{\frac{1}{6\,ad-6\,bc}\ln \left ({x}^{2}-\sqrt [3]{{\frac{c}{d}}}x+ \left ({\frac{c}{d}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{c}{d}} \right ) ^{-{\frac{2}{3}}}}+{\frac{\sqrt{3}}{3\,ad-3\,bc}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{c}{d}}}}}}-1 \right ) } \right ) \left ({\frac{c}{d}} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^3+a)/(d*x^3+c),x)

[Out]

-1/3/(a*d-b*c)/(1/b*a)^(2/3)*ln(x+(1/b*a)^(1/3))+1/6/(a*d-b*c)/(1/b*a)^(2/3)*ln(x^2-(1/b*a)^(1/3)*x+(1/b*a)^(2
/3))-1/3/(a*d-b*c)/(1/b*a)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(1/b*a)^(1/3)*x-1))+1/3/(a*d-b*c)/(c/d)^(2/3)*l
n(x+(c/d)^(1/3))-1/6/(a*d-b*c)/(c/d)^(2/3)*ln(x^2-(c/d)^(1/3)*x+(c/d)^(2/3))+1/3/(a*d-b*c)/(c/d)^(2/3)*3^(1/2)
*arctan(1/3*3^(1/2)*(2/(c/d)^(1/3)*x-1))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.12349, size = 606, normalized size = 2.1 \begin{align*} -\frac{2 \, \sqrt{3} \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{1}{3}} \arctan \left (\frac{2 \, \sqrt{3} a x \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{2}{3}} - \sqrt{3} b}{3 \, b}\right ) + 2 \, \sqrt{3} \left (\frac{d^{2}}{c^{2}}\right )^{\frac{1}{3}} \arctan \left (\frac{2 \, \sqrt{3} c x \left (\frac{d^{2}}{c^{2}}\right )^{\frac{2}{3}} - \sqrt{3} d}{3 \, d}\right ) - \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{1}{3}} \log \left (b^{2} x^{2} + a b x \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{1}{3}} + a^{2} \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{2}{3}}\right ) - \left (\frac{d^{2}}{c^{2}}\right )^{\frac{1}{3}} \log \left (d^{2} x^{2} - c d x \left (\frac{d^{2}}{c^{2}}\right )^{\frac{1}{3}} + c^{2} \left (\frac{d^{2}}{c^{2}}\right )^{\frac{2}{3}}\right ) + 2 \, \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{1}{3}} \log \left (b x - a \left (-\frac{b^{2}}{a^{2}}\right )^{\frac{1}{3}}\right ) + 2 \, \left (\frac{d^{2}}{c^{2}}\right )^{\frac{1}{3}} \log \left (d x + c \left (\frac{d^{2}}{c^{2}}\right )^{\frac{1}{3}}\right )}{6 \,{\left (b c - a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="fricas")

[Out]

-1/6*(2*sqrt(3)*(-b^2/a^2)^(1/3)*arctan(1/3*(2*sqrt(3)*a*x*(-b^2/a^2)^(2/3) - sqrt(3)*b)/b) + 2*sqrt(3)*(d^2/c
^2)^(1/3)*arctan(1/3*(2*sqrt(3)*c*x*(d^2/c^2)^(2/3) - sqrt(3)*d)/d) - (-b^2/a^2)^(1/3)*log(b^2*x^2 + a*b*x*(-b
^2/a^2)^(1/3) + a^2*(-b^2/a^2)^(2/3)) - (d^2/c^2)^(1/3)*log(d^2*x^2 - c*d*x*(d^2/c^2)^(1/3) + c^2*(d^2/c^2)^(2
/3)) + 2*(-b^2/a^2)^(1/3)*log(b*x - a*(-b^2/a^2)^(1/3)) + 2*(d^2/c^2)^(1/3)*log(d*x + c*(d^2/c^2)^(1/3)))/(b*c
 - a*d)

________________________________________________________________________________________

Sympy [A]  time = 43.1292, size = 447, normalized size = 1.55 \begin{align*} \operatorname{RootSum}{\left (t^{3} \left (27 a^{5} d^{3} - 81 a^{4} b c d^{2} + 81 a^{3} b^{2} c^{2} d - 27 a^{2} b^{3} c^{3}\right ) + b^{2}, \left ( t \mapsto t \log{\left (x + \frac{81 t^{4} a^{7} c^{2} d^{5} - 243 t^{4} a^{6} b c^{3} d^{4} + 162 t^{4} a^{5} b^{2} c^{4} d^{3} + 162 t^{4} a^{4} b^{3} c^{5} d^{2} - 243 t^{4} a^{3} b^{4} c^{6} d + 81 t^{4} a^{2} b^{5} c^{7} - 3 t a^{4} d^{4} + 3 t a^{3} b c d^{3} + 3 t a b^{3} c^{3} d - 3 t b^{4} c^{4}}{a^{2} b d^{3} + b^{3} c^{2} d} \right )} \right )\right )} + \operatorname{RootSum}{\left (t^{3} \left (27 a^{3} c^{2} d^{3} - 81 a^{2} b c^{3} d^{2} + 81 a b^{2} c^{4} d - 27 b^{3} c^{5}\right ) - d^{2}, \left ( t \mapsto t \log{\left (x + \frac{81 t^{4} a^{7} c^{2} d^{5} - 243 t^{4} a^{6} b c^{3} d^{4} + 162 t^{4} a^{5} b^{2} c^{4} d^{3} + 162 t^{4} a^{4} b^{3} c^{5} d^{2} - 243 t^{4} a^{3} b^{4} c^{6} d + 81 t^{4} a^{2} b^{5} c^{7} - 3 t a^{4} d^{4} + 3 t a^{3} b c d^{3} + 3 t a b^{3} c^{3} d - 3 t b^{4} c^{4}}{a^{2} b d^{3} + b^{3} c^{2} d} \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x**3+a)/(d*x**3+c),x)

[Out]

RootSum(_t**3*(27*a**5*d**3 - 81*a**4*b*c*d**2 + 81*a**3*b**2*c**2*d - 27*a**2*b**3*c**3) + b**2, Lambda(_t, _
t*log(x + (81*_t**4*a**7*c**2*d**5 - 243*_t**4*a**6*b*c**3*d**4 + 162*_t**4*a**5*b**2*c**4*d**3 + 162*_t**4*a*
*4*b**3*c**5*d**2 - 243*_t**4*a**3*b**4*c**6*d + 81*_t**4*a**2*b**5*c**7 - 3*_t*a**4*d**4 + 3*_t*a**3*b*c*d**3
 + 3*_t*a*b**3*c**3*d - 3*_t*b**4*c**4)/(a**2*b*d**3 + b**3*c**2*d)))) + RootSum(_t**3*(27*a**3*c**2*d**3 - 81
*a**2*b*c**3*d**2 + 81*a*b**2*c**4*d - 27*b**3*c**5) - d**2, Lambda(_t, _t*log(x + (81*_t**4*a**7*c**2*d**5 -
243*_t**4*a**6*b*c**3*d**4 + 162*_t**4*a**5*b**2*c**4*d**3 + 162*_t**4*a**4*b**3*c**5*d**2 - 243*_t**4*a**3*b*
*4*c**6*d + 81*_t**4*a**2*b**5*c**7 - 3*_t*a**4*d**4 + 3*_t*a**3*b*c*d**3 + 3*_t*a*b**3*c**3*d - 3*_t*b**4*c**
4)/(a**2*b*d**3 + b**3*c**2*d))))

________________________________________________________________________________________

Giac [A]  time = 1.12593, size = 375, normalized size = 1.3 \begin{align*} -\frac{b \left (-\frac{a}{b}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{a}{b}\right )^{\frac{1}{3}} \right |}\right )}{3 \,{\left (a b c - a^{2} d\right )}} + \frac{d \left (-\frac{c}{d}\right )^{\frac{1}{3}} \log \left ({\left | x - \left (-\frac{c}{d}\right )^{\frac{1}{3}} \right |}\right )}{3 \,{\left (b c^{2} - a c d\right )}} + \frac{\left (-a b^{2}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{a}{b}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{a}{b}\right )^{\frac{1}{3}}}\right )}{\sqrt{3} a b c - \sqrt{3} a^{2} d} - \frac{\left (-c d^{2}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-\frac{c}{d}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-\frac{c}{d}\right )^{\frac{1}{3}}}\right )}{\sqrt{3} b c^{2} - \sqrt{3} a c d} + \frac{\left (-a b^{2}\right )^{\frac{1}{3}} \log \left (x^{2} + x \left (-\frac{a}{b}\right )^{\frac{1}{3}} + \left (-\frac{a}{b}\right )^{\frac{2}{3}}\right )}{6 \,{\left (a b c - a^{2} d\right )}} - \frac{\left (-c d^{2}\right )^{\frac{1}{3}} \log \left (x^{2} + x \left (-\frac{c}{d}\right )^{\frac{1}{3}} + \left (-\frac{c}{d}\right )^{\frac{2}{3}}\right )}{6 \,{\left (b c^{2} - a c d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x^3+a)/(d*x^3+c),x, algorithm="giac")

[Out]

-1/3*b*(-a/b)^(1/3)*log(abs(x - (-a/b)^(1/3)))/(a*b*c - a^2*d) + 1/3*d*(-c/d)^(1/3)*log(abs(x - (-c/d)^(1/3)))
/(b*c^2 - a*c*d) + (-a*b^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-a/b)^(1/3))/(-a/b)^(1/3))/(sqrt(3)*a*b*c - sqrt(
3)*a^2*d) - (-c*d^2)^(1/3)*arctan(1/3*sqrt(3)*(2*x + (-c/d)^(1/3))/(-c/d)^(1/3))/(sqrt(3)*b*c^2 - sqrt(3)*a*c*
d) + 1/6*(-a*b^2)^(1/3)*log(x^2 + x*(-a/b)^(1/3) + (-a/b)^(2/3))/(a*b*c - a^2*d) - 1/6*(-c*d^2)^(1/3)*log(x^2
+ x*(-c/d)^(1/3) + (-c/d)^(2/3))/(b*c^2 - a*c*d)